DATA HANDLING AND MAINTAINING DATA
CONSISTENCY IN SCALABLE REPLICATED
MICRO-SERVICES

WMNKGTL Weerakoon' and Banage TGS Kumara

Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Sri Lanka
"thamira1005@gmail.com

Abstract- Monolithic Architecture helps to develop
server-side enterprise applications. But, it views as a
“big ball of mud”. That indicates monolithic architecture
has many drawbacks. Introduction of cloud based
microservice architecture can solve these kind of
drawbacks. Microservice architecture helps to scale an
application. Most of the applications write less data than
reading of that data. Scaling of read model and write model
separately is very important. But, scaling applications
using microservice architecture is very hard. Further,
applications cannot simply use a local ACID (Atomicity,
Consistency, Isolation, Durability) transaction. Read
part is scaling to more replicas. Thus, maintenance of the
data of all replicas in same level is important. Replication
of read model and maintenance of data consistency
which would provide experimental insight still needs
to be developed. To bridge this gap, development of an
architecture based on messaging with RabbitMq publish/
subscribe method, event sourcing and Command Query
Responsibility Segregation (CQRS) with axon framework
is used in this study. Evaluation of this architecture was
done by replication of the read model using Docker
and Docker-compose. Further, we have analysed data
consistency in our experiments.

Keywords- Monolithic ~ Architecture; Microservice

architecture; Event sourcing;

l. INTRODUCTION

Monolithic Architecture helps to develop server-side
enterprise applications. The major advantage of the

monolithic architecture is that most applications typically
have a large number of cross-cutting concerns, but in
Monolithic applications all components are bundled
together as a single application, which most people
now have come to view as a “big ball of mud”. That says
monolithic architecture has many drawbacks (Richardson,
2017). Developers move to microservice architecture to
solve these drawbacks.

Substantial development of Service Oriented Architecture
leads to the rising of Microservice architecture and this
focuses on specific aspects, such as decomposition to small
services, scaling of the application, improve agile practices
for development, independent deployment and separate
testing methodologies, continuous delivery features and
usage of infrastructure automation, decentralized data
management and decentralized

governanceamong services. Existing researchesinvestigate
the characteristics of Microservice architectures. They
defined the main facts that need to design Microservice
architectures (Alshuqayran, et al.,, 2016), (Di Francesco, et
al., 2017), (Pahl & Jamshidi, 2016).

Data consistency is the most critical part of the
microservice architecture. Therefore, it is important to
maintain the data consistency. Creation of data in an
application happens less than reading of that data. For
an example, let us consider a scenario of reserving an
airline ticket. Here, writing operation is the reservation
of the Seat. Only one person can do this reservation at
a time of selected seat. However, many people access
the system to check the availability of that selected seat.

GENERAL SIR JOHN KOTELAWALA DEFENCE UNIVERSITY | 281

This checking of the availability is the reading operation.
Therefore, developer needs to pay particular attention
to reading performance. However, writing and reading
performances cannot be independently separated. Here,
we can use CQRS pattern.

The CQRS principle advises separating writing operations
from reading operations effectively. Writing part is
identified as ‘Command-Model' and reading part is
identified as ‘Query-Model’ (Fowler, 2011).

Further, Command-Model must atomically publish events
to the all Query-Model whenever their state changes.
Event sourcing persists the state of a business entity.
A new event will be added to the list of events with the
change of state of business entity. Saving an event is just
a single operation and especially atomic. The application
has the ability to reconstruct the current state of an entity
by replaying the events. In this paper, we propose an
approach to handle data and maintain data consistency in
scalable microservices using CQRS and event Sourcing.
The rest of this paper is organized as follows. In section
II, we present the problem and motivation. Section III
discusses preliminaries. Section IV Methodology. Section
V discusses our experiment and its evaluation. Finally,
section VII concludes the paper

Il. BACKGROUND AND MOTIVATION

Some business transactions span over multiple services.
Thus, we need a mechanism to ensure data consistency
across the services. For an example, let us consider the
previous scenario of reserving an airline ticket. To reserve
a ticket, a customer should have at least the credit amount

equals to air ticket price and service charges of the credit
card. If the system approves the transaction without
having the required credit amount by mistake, then it will
be a critical error, which will violate the reliability of airline
service. Since ticket, reserving data and customer’s credit
amount are in different databases the application cannot
simply use a local ACID transaction. CQRS can be used
to achieve ACID transaction in distributed microservice
environment (Melnik, et al., 2012).

According to microservice architecture database per
each Microservice is very important. Thus, if we replicate
Microservices, every Microservice needs its own database.
Assume we have an application with replicas and this

application requires new data, which should be added
through HTTP request. Once we add the new data to one
replica, it needs to synchronize with remaining replicas Fig.
1 illustrates a scenario where synchronization of data is still
in progress. In this instance, if someone tried to retrieve data
from the third replica, then data retrieved will not be up to
date as third replica is still in synchronization process. In that
case, if doesn’t have eventual consistency. Thus, this research
is done to propose a new architecture to solve this problem.

=— <,

Replivd | synelironisation

]

Replica 1

il

Replica 3

Figure 1. Command Query Responsible Segregation pattern

lIl. PRELIMINARIES

A. Command Query Responsible Segregation

CQRS is a pattern that use a different model to update
information and read information. For some complex
operation handling situations, this separation can be
valuable. This helps to allocate resources independently
to fulfil on-demand provisioning of computing resources.
Figure 3 displays the CQRS pattern (Data read part and
write part are separately denoted).

Fig 3. shows that application is divided to two parts. One
for data reading and one for data writing to database.

PR, FLIE
wacks B
cw et

<>

ToTeEa
bl
v e

Figure 2. Database level Synchronisation

282 | GENERAL SIR JOHN KOTELAWALA DEFENCE UNIVERSITY

According to CQRS pattern data read part is called as
query model and data write part is called as command
model.

B. Command model (Write model)

Commands are responsible for introducing all changes to
the system. They lead to change the state of the system.
It indicates requests to domain. While request indicates
command, it may be accepted or rejected. An accepted
event leads to change in the database. Reject command
indicate an exception and rollback the system to stable
state. Command should not return any value. If there is
a distributed system, command emit zero or more events
being emitted to incorporate new facts into the system.

Through replicating the instances of read models and by
balancing the load, scalable processing could be achieved.
Each node could manage its own databases instance
with the help of a complete model. Command need to
update all the replicas at the same time to manage data
consistency.

According to seat reservation system, following two
commands help to state change.

. SeatReseveCreateCommand

o SeatReservationUpdateCommand

C. Query model (Read model)

Query is a READ operation. It responsible for reading the
state of the system, analyse aggregates, get appropriate
data to query. As the response, data is transformed to most
useful format. It can be JSON/XML or HTML. According
to CQRS theory, query model cannot make any change to
the database. In order to achieve the scalability, replicate
the read model and introduce database to each replica. It
leads to manage request load. Requests can be distributed
as a round robin method to all replicas. For some efficient
read manner, we can use different kind of databases to
this read model. For example, Redis is more efficient
than MySQL in big data analysis because more speed is
required to analyse more data. Some query models can
be implemented with different databases according to
requirements.

D. Events

Events are treated as notifications. If something happens,
event is responsible to notify that to other interested
parties. Command emit ‘event’ if there is any state change.
If all the events are logged in a database, that events can
be replayed and check all the state of change. According to
seat reservation system two events emitted by commands
are;

. SeatReservationCreateEvent

o SeatReservationUpdateEvent

E. Event Sourcing

Event Sourcing is a major part that helps to improve
reliability and consistency when CQRS is considered.
Event sourcing is a simple theory that logs the state
changings. According to seat reservation system events
are produced, that represent every change made in
the system. Every change is logged according to event
sourcing theory. If events are replayed from beginning
to current stage that stored in the event store, it helps to
understand, how system has changed and will get to the
current state of the system. It is similar to technology used
in version control systems such as GitHub, BitBucket. In
version control systems commit log is used to understand
how the code changed by contributors. If there is any
conflict, user can replay and can get a stable state. A
business object is persisted by storing a sequence of state
changing events. Whenever an object’s state changes, a
new event is appended to the sequence of events. Since
that is considered as a one operation, it is inherently
atomic. An entity’s current state is reconstructed by
replaying its events.

E. Eventual consistency

When an application makes a change to a data item on
one replica, that change has to be conveyed to the other
replicas. Since the change conveyed does not take place at
once, there is a time period in which some replicas have
the most recent change while other replicas does not. At
this time period replica will be mutually inconsistent.
However, at the end the changes will be conveyed to all
the replicas, and hence the term “eventual consistency’.
Following Fig 3. shows how eventual consistency is
achieved in current study.

GENERAL SIR JOHN KOTELAWALA DEFENCE UNIVERSITY | 283

According to Fig 3. command handler distributes all new
reservation request to the replicas in same time. Steaming
and queue ensure all the request are distributing to the
replicas.

\IIi||||I..|I|I 1I :'|-|II|]

Figure 3. Data distribute to all query model
replicas by command model

IV. METHODOLOGY

The purpose of this research is to describe effective and
efficient way of “Data Handling and Maintaining Data
Consistency in Scalable Replicate Microservices” For
that, we applied the Microservice architectures for the
proposed system. Then the system is tested for different
architectures and most efficient architecture is selected.

In this research, seat reservation system that is applicable
to places such as airport or cinema was first selected. This
scenario represents a situation where more people access
the system at the same time to check the availability of the
seat. Some of the requests come to server to only check
the availability but the possibility of reserving a seat is less.
From that request, few of them reserve the seat. The people
who visit the system to check the availability introduce
more traffic to the system. An application was developed
using CQRS pattern to meet with the requirement of
above scenario.

To develop this main application CQRS pattern and Event
Sourcing Methods were used. Following technologies
were used in order to implement the architecture; Spring-
boot 2, MySQL, Axon framework, RabbitMq, Docker
and Docker-compose. Fig 4. shows the basic structure
of the proposed architecture. Here, seat booking was
selected as the core service which acts as the Command-
Model. Seat Reserving acts as replicated Query-Model.

O

1__.-" C;.

sy Sy L

™ o e
¥

.D [herep fwielél LY
-@- Lol mgpplcation b e

Figure 4. Basic Architecture

Microservice gateway pattern was the main architecture
used to implement this system. Gateway service helped
to select one instance of seat reservation service, that
provides available seats. If a seat is booked from one
service, all services need to be updated at the same time by
publishing to multiple subscriber pattern. To accomplish
this, two ‘distribute messages pattern’ were used. Those
patterns were simple HTTP request and Message
Streaming. The results of these two patterns were then
compared. After comparison of results, problems related
to that scenario were identified. The best pattern was
selected and the efficiency of the pattern was maximized.

A. HTTP Request

Implementation of application was done using “Spring
boot” web framework and “Rest Template” to test
efficiency of simple HTTP messaging. As the first step of
implementation, Spring RestController class was created
to catch a message. The application then distributes the
message to Query-Model. Query part catch the message
and saveitin the database. A loop is used to send thousands
of requests to query module. The time of massage sent (t1)
and saved (t2) should be recorded in the database. Then
the latency (L) is calculated using following

284 | GENERAL SIR JOHN KOTELAWALA DEFENCE UNIVERSITY

(1) (Latency is the time taken for massage sending).
L=t2-tl(1)

Graph between L and total time taken for send 1000
message is plotted.

B. Message Streaming

The procedure done using HTTP request can be
reproduced using data streaming method. This carried
out using spring data streaming with RabbitMq message
broker. Results showed that data streaming method is the
most suitable method for efficient and ‘eventual consistent’
data transaction. Thus, Message Streaming method is
selected to implement CQRS and event sourcing.

V. RESULTS AND DISCUSSION

When implementing the Seat reservation system based on
the API gateway pattern, we have to consider about the
communication between microservices. When Scaling of
Query model and command model is done, those models
need to communicate to share the data using HTTP
or message stream. Selecting the best communication
method is the main part of this research. Fig 5. shows the
Latency of two methods used to send 1000 messages using
loop. Latency of Data streaming method is illustrated in
yellow (Series2) colour line. Orange (Series1) colour line
illustrates the latency of HTTP messaging. According to
the results, HTTP shows comparatively low latency, so
that method is efficient than Data streaming method.

Looping time in HTTP method is higher than the
streaming method. According to the results looping time
in stream is 707ms and looping time in HTTP is 8491ms.
Hence, we consider about looping time stream method is
better than HTTP method.

Delay time in HTTP method is lower than the streaming
method. According to the results, delay time of streaming
is 3266ms and maximum delay time of HTTP is 33ms.
When we consider about delay, HTTP is better than
streaming,.

The difference between HTTP and streaming method
is HTTP method waits for the response of recently sent
message to send the next message and this is how HTTP

method ensure the message is sent but, this is not the case in
Streaming method. In Streaming method, message broker
takes the responsibility of sending all the messages without
failure. Thus, Delay in streaming method is negligible.

While communication is done using HTTP method, if
there is a problem in server application, then requested
messages can be lost. The lost messages have to be
managed manually and failed messages have to be re-
sent. But, in streaming process, if the server is down the
messages are stored in queue in the message broker. So, we
don’t have to worry about the losing the messages. In real
world scenario manual management of failed messages
are not possible, because it will become problematic in
scenarios such as first come first out scenarios.

Figure 5. Latency and total time taken for sending
1000 messages

According to Seat reservation system requirement, many
people can request for seat reservation at once. In that
case request cannot be prioritized manually. Because of
the competition to reserve seats, some requests can be
lost. We can’t handle failed requests without queue. But,
streaming method sends all the requests to the queue and
messages are stored in the queue until the communication
is complete. Thus, no requests will be lost. Once a person
requests to reserve a seat that person need to have the
minimum credit amount to fulfil the requirement. When
the person’s credit amount is not sufficient, the request will
fail. In this case the chance for reserving the seat should
go to the next person who made the request after the
first person. This is difficult to achieve by HT TP method.
But, data streaming method can fulfil this requirement,
because it saves requests in the queue.

Because of the scenario described above, the current
developing architecture was carried out using the message

GENERAL SIR JOHN KOTELAWALA DEFENCE UNIVERSITY | 285

PROCEEDINGS

streaming method with queue to avoid any complications.
Furthermore, architecture need to enhance for update
multiple Query-Models using multiple-queue at same
time without update as database level synchronization
describe in fig. 1.

Further, according first graph in fig. 6, behaviour of
five replicas are the same. But, numerically each curves
are different from each other. Second graph in fig. 6
illustrates part of the first graph. It shows that there is
some delay between the replicas. That average delay is
3521 milliseconds.

T eren | MllSec o)

Figure 6 . Behaviour of five replicas

VI. CONCLUSION

This paper contributes to the research on CQRS and
event sourcing for Data Handling and Maintaining
Data Consistency in Scalable Replicated Microservices.
According to the result of this study, we can fulfil below
functions. Management of data consistency, replication
of unlimited query models and management of eventual
consistency. Data inconsistency could happen while
communication between command model and query

replicas. To prevent that we have to use message streaming
process with queues. Predefined queues make limitations
for replication of query models and unused queues waste
the resources. Generated queues help to reduce wastage of
resources. Further, if there is any state change, command
model publishes event to all the replicas in same time
using streaming, which is better than database level
synchronization of replicas.

As the future work, we plan to reduce the average delay to
a minimum level using reactive manifesto. Future more,
if there is a new instance introduce to the application as
a replica of query-model also update as same as other
replicas using replaying past states.

ACKNOWLEDGEMENT

For the success of this study it would not have been
possible without the kind support, encouragement and
help of many individuals and organizations. I would
like to extend my sincere thanks to all the parties who
joined with me to make this research success. I am highly
indebted to Dean Prof. Udaya Rathnayaka, Faculty
of Applied Sciences, Sabaragamuwa University of Sri
Lanka, and all other staff members of the department of
Computing and Information Systems in the Faculty of
Applied Sciences, Sabaragamuwa University of Sri Lanka,
for their help and wishes for the successful completion of
this research.

REFERENCES

Alshugayran, N., Ali, N. & Evans, R., 2016. A Systematic Mapping
Study in Microservice Architecture. Macau, China, IEEE.

Di Francesco, P, Malavolta, I. & Lago, P, 2017. Research on
architecting microservices. Gothenburg, Sweden, IEEE. Fowler,
M., 2011. CQRS. [Online] Available at: https://martinfowler.com

Melnik, G. et al,, 2012. Exploring CQRS and Event Sourcing A
journey into high scalability, availability, and maintainability
with Windows Azure. s.1.:Microsoft Developer Guidance.

Pahl, C. & Jamshidi, P., 2016. Microservices: A Systematic
Mapping Study. Rome, Italy, s.n., pp. 137-146 . Richardson, C.,
2017. Monolithic Architecture. [Online] Available at: http://
microservices.io/index.html

The delay could affect the architecture to become vulnerable.
Therefore, as a future enhancement it is needed to focus on steps
to decrease this kind of delays.

286 11 INTERNATIONAL RESEARCH CONFERENCE | GENERAL SIR JOHN KOTELAWALA DEFENCE UNIVERSITY

